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Abstract: We consider large Wilson loops with quarks in higher representations in SU(N)

Yang-Mills theories. We consider representations with common N -ality and check whether

the expectation value of the Wilson loop depends on the specific representation or only

on the N -ality. In the framework of AdS/CFT we show that 〈WR〉 = dimR exp(−σkA),

namely that the string tension depends only on the N -ality k but the pre-exponent factor

is representation dependent. The lattice strong coupling expansion yields an identical

result at infinite N , but shows a representation dependence of the string tension at finite

N , a result which we interpret as an artifact. In order to confirm the representation

independence of the string tension we re-analyse results of lattice simulations involving

operators with common N -ality in pure SU(N) Yang-Mills theory. We find that the picture

of the representation-independence of the string tension is confirmed by the spectrum of

excited states in the stringy sector, while the lowest-lying states seem to depend on the

representation. We argue that this unexpected result is due to the insufficient distance of

the static sources for the asymptotic behaviour to be visible and give an estimate of the

distance above which a truly representation-independent spectrum should be observed.
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1. Introduction

In confining gauge field theories with fields in the adjoint representation, such as pure

SU(N) Yang-Mills theory or N = 1 Super Yang-Mills, a tube of electric flux is expected

to form between static charges. When N > 3 an interesting problem is the evaluation of

the expectation value of a Wilson loop in a representation R,

〈WR〉 ≡

〈

tr exp

(

i

∫

dxµAa
µT a

R

)〉

. (1.1)

The common lore is that for large loops an area-law is expected and that the string

tension σ does not depend on the representation R but only on its N -ality k

〈WR〉 ∼ exp (−σkA) . (1.2)

The explanation is very simple and intuitive: a cloud of gluons localised near the source

will screen it, such that at a distance ∼ Λ−1
QCD far from the source it will be impossible

to tell what the original charge was and only its N -ality k can be associated with long

distance observables. If indeed the string tension is representation independent, we can

choose the reducible representation ⊗ ⊗ · · · ⊗ (with k boxes) to evaluate the k-string

tension

exp (−σkA) ∼

〈

tr exp

(

i

∫

dxµAa
µT a

⊗ ⊗ ...⊗

)〉

. (1.3)

At infinite N , under the assumption of factorisation, we obtain

〈

tr exp

(

i

∫

dxµAa
µT a

⊗ ⊗ ...⊗

)〉

=

〈

tr exp

(

i

∫

dxµAa
µT a

)〉k

∼ exp (−kσ1A) , (1.4)
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namely σk = kσ1. At finite N we should think about the k-string as a bound state of k

elementary strings. The dependence of the string tension on k and N is the subject of

many papers [1 – 16] since it can teach us about the dynamics of the flux tube and reveal

information on the mechanism of confinement.

The goal of this paper is to examine the issue of representation independence. We

will analyse the problem from various angles: the AdS/CFT correspondence, the lattice

strong coupling expansion and a lattice simulation. We will argue that the string tension

is indeed representation independent, but that the pre-exponent factor depends on the

representation R.

The organisation of the paper is as follows: in section 2 we analyse the problem using

the Maldacena prescription [17]. In section 3 we re-analyse the problem by using the

lattice strong coupling expansion and we find at infinite N a result which is identical to

the holographic calculation. At finite N we obtain an unexpected result: the string tension

depends on the representation R and not only on the N -ality k. We interpret it as an

artifact of the strong coupling expansion approach. Finally in section 4 we re-analyse

the existing lattice data and we suggest that it supports universality: the string tension

depends only on the N -ality k.

2. Wilson loops in the AdS/CFT correspondence

In this section we wish to evaluate the expectation value of a Wilson loop with quarks in

a higher representation.

Before we carry out the analysis let us state what is our expectation: in a confining

theory with dynamical fields in the adjoint representation (such as N = 1 SYM) or with

no dynamical fermions, such as pure Yang-Mills theory, the string tension is expected to

depend only on the N -ality k of the representation of the external quarks. It is, however,

possible that the pre-exponent factor will exhibit a dependence on the representation. Thus

the expectation is that in such theories, large Wilson loops will behave as

〈WR〉 ≡

〈

tr exp

(

i

∫

dxµAa
µT a

R

)〉

= F (R) exp (−σkA) . (2.1)

In particular in 2d YM it was found [18] that

〈WR〉 = dim R exp (−σA) , (2.2)

namely that the pre-exponent factor is dimR. The factor dim R is natural at weak coupling.

In particular, when the gauge coupling is zero 〈WR〉 = 〈tr 1〉 = dimR.

In the AdS/CFT framework, the expectation value of a Wilson loop is the proper

area, or the minimal surface of a string whose worldsheet boundary is the Wilson loop

contour [17]. The worldsheet boundary lies on the boundary of the AdS space where the

field theory lives and extends to the interior of the AdS space.

We will consider Wilson loops in higher representation in a confining theory. In this

case confinement manifests itself by the existence of an IR-cutoff in the geometry (either

– 2 –
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Figure 1: k = 2 string corresponding to the reducible representation.

a black-hole horizon, or an ’end of space’ situation). The string spends its time on the

IR-cutoff and hence its proper area is proportional to the boundary area [19, 20].

Our discussion is closely related to that of Gross and Ooguri [3] who considered higher

representations in N = 4.

2.1 String with k = 2

Consider the following three representations with k = 2: the reducible representation ⊗ ,

the antisymmetric representation and the symmetric representation . Group elements

transforming in those representations are related to the fundamental representation as

follows

〈

W ⊗

〉

=
〈

(tr U)2
〉

〈W 〉 =
1

2

(〈

(tr U)2
〉

+
〈

tr U2
〉)

〈

W

〉

=
1

2

(〈

(tr U)2
〉

−
〈

tr U2
〉)

, (2.3)

where U is a Wilson loop in the fundamental representation U ≡ W .

The above relations eq. (2.3) suggest a way to evaluate expectation values of Wilson

loops in higher representation in terms of the expectation value of a Wilson loop in the

fundamental representation. This is useful, since in string theory the fundamental string

F1 is the only object that we have at hand.1 Higher representations will be obtained by

products and sums of various configurations of the fundamental string. For example, the

reducible two-index representation will be obtained by a product of two coincident closed

strings, with a one winding each, corresponding to
〈

(tr U)2
〉

, see figure 1.

In the large N limit we expect factorisation, namely

〈

W ⊗

〉

=
〈

(tr U)2
〉

→ 〈tr U〉 〈tr U〉 . (2.4)

Thus, the expectation value of the Wilson loop in the reducible representation is simply

the square of the expectation value of the Wilson loop in the fundamental representation.

Next we discuss the case of the symmetric and the antisymmetric representations.

Due to eq. (2.3), we propose that the expectation value of the symmetric (the antisymmet-

ric) involves two contributions: a worldsheet with two coincident fundamental loops plus

(minus) a worldsheet of a string that winds twice, see fig. 2.

We argue that the expectation value of a Wilson loop in the fundamental representa-

tion is

〈U〉 = N exp (−SN.G.) = N exp (−σ1A) . (2.5)

1Recently, following Drukker and Fiol [21], several authors [22 – 25] have used D3-branes and D5-branes

to evaluate Wilson and Polyakov loops in higher representation of SU(N) in N = 4 Super Yang-Mills.
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Figure 2: k = 2 strings: the symmetric and the antisymmetric representation.

Although in the original paper [17] the pre-exponent factor N was mentioned, it was not

discussed in detail. In field theory it is expected, since the Wilson loop involves a trace over

matrices in the fundamental representation. How can we understand it from the gravity

side?2 recall that the prescription of Maldacena [17] for calculating Wilson loops involves

Higgsing U(N + 1) → U(N) × U(1). In this way, a theory which contains dynamical

matter in the adjoint representation can give rise to ’external’ matter in the fundamental

representation. In the AdS/CFT correspondence this is realized by separating a single

brane from a stack of N +1 coincident branes. The separated brane can carry an arbitrary

Chan-Paton factor and we have to sum over all possibilities, hence we get a factor N .

By using eq. (2.4) and eq. (2.5) we find that

〈

W ⊗

〉

= N2 exp (−2SN.G.) = N2 exp (−2σ1A) , (2.6)

namely, that the string tension is σ2 = 2σ1. This is expected since the k = 2 string should

be thought of a bound state of two fundamental string, but in the large N limit (or gst → 0

limit) the two strings do not interact and hence its string tension is simply twice the tension

of the fundamental string.

Next we proceed to the case of symmetric/antisymmetric representations. Here we

have to add/subtract the contribution from a string that winds twice. Consider a generic

confining geometry of the form [26]

ds2 = Guu(du)2 + GRR(dR)2 + GΦΦ(dΦ)2 + · · · (2.7)

and a circular Wilson loop whose worldsheet coordinates are r, φ. In the gauge φ = Φ, the

Nambu-Goto action of a circular string that winds twice is simply twice the action of a

string with with one winding

Sw=2
N.G. =

1

2πα′

∫ 4π

0
dφ

∫

dr
√

det GMN∂αXM∂βXN

=
1

2πα′

∫ 4π

0
dφ

∫

dr
√

GΦΦ(r)(GRR(r) + Guu(r)(∂ru)2)

= 2Sw=1
N.G. . (2.8)

Accordingly,

〈W 〉 =
1

2

(〈

(tr U)2
〉

+
〈

tr U2
〉)

=
1

2
N2 exp (−2σ1A) +

1

2
N exp (−2σ1A) , (2.9)

and similarly,
〈

W

〉

=
1

2

(〈

(tr U)2
〉

−
〈

tr U2
〉)

=
1

2
N2 exp (−2σ1A) −

1

2
N exp (−2σ1A) . (2.10)

2We thank Carlos Nuñez for a discussion about this issue.
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In all cases (with k = 2) we find,

〈WR〉 = dim R exp (−2σ1A) , (2.11)

namely an expected string tension σ2 = 2σ1 and a prefactor that depends on the represen-

tation.

2.2 An arbitrary representation

We proceed now to the calculation of the expectation value of a Wilson loop in an arbitrary

representation R.

We use the standard decomposition of a group element in representation R in terms of

the fundamental representation and use it for expressing the Wilson loop in a representation

R in terms of Wilson loops in the fundamental representation (see [3] for a discussion)

WR ≡ tr exp

(

i

∫

dxµAa
µT a

R

)

=
∑

P n

C(Pn)
∏

tr Uwi(P n) (2.12)

where the sum is over all possible partitions Pn (all possible ways of writing an integer

dim R in terms of a sum of positive integers). C(Pn) are coefficients that depend on the

partition Pn and wi(P
n) are the elements of the partition. wi(P

n) must satisfy
∑

wi(P
n) =

k. From the limit of zero coupling we obtain dimR =
∑

P n C(Pn)NR(P n), where R(Pn) is

the number of elements (the number of traces in the product in eq. (2.12)) in the partition

Pn.

The AdS/CFT predicts

〈tr Uw〉 = N exp (−wσ1A) (2.13)

hence

〈WR〉 =
∑

P n

C(Pn)NR(P n) exp (−kσ1A) = dim R exp (−kσ1A) . (2.14)

Thus the result eq. (2.14) generalises the k = 2 case. The AdS/CFT correspondence

predicts the same tension for all representations with common N -ality. The pre-exponent

factor depends on the specific representation and the dependence is dim R.

We expect that once the string coupling gst ≡ 1
N is turned on, namely when 1/N

corrections are included, a result similar to eq. (2.14). In particular the pre-exponent

factor looks like a kinematic factor. The dynamics will modify the string tension, but only

in powers of 1/N2,

σk/σ1 = k −O(1/N2) + · · · , (2.15)

since the bulk dynamics is a closed string dynamics [12, 13]. So we conjecture the following

expression at finite k and N

〈WR〉 = dim R exp (−σkA) , (2.16)

namely that at finite k and N there is a prefactor which is exactly dim R (and in particular

it does not depend on the Wilson loop contour) and an exponent with a string tension that

satisfies eq. (2.15).

– 5 –
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3. Wilson loops at strong coupling on the lattice

The philosophy underlying Wilson loop calculations in the AdS/CFT framework shares

similarities with the lattice strong coupling formalism, a well-established technique that

exists for as long as the lattice approach itself3. In this section, we provide a determina-

tion of the behaviour of the Wilson loop at leading order in the lattice strong coupling

limit. Before proceeding, we note that the lattice strong coupling result is not expected

to describe the continuum behaviour of Wilson loops, since the strong coupling series does

not extrapolate beyond the bulk critical coupling [28, 29]. However, a comparison of the

lattice strong coupling and the AdS/CFT frameworks can give hints on features that could

be universal properties of Wilson loops and hence manifest themselves in any formalism.

On the lattice, the vacuum expectation value (vev) of a Wilson loop in the represen-

tation R of N -ality k is given by

〈WR〉 =
1

Z

∫

(DUµ) e−SWR , (3.1)

where (DUµ) is the gauge field measure defined over the link variables Uµ(i) and Z =
∫

(DUµ) e−S is the partition function of the theory. The choice of the lattice Yang-Mills

action S is not unique, since lattice actions that differ by an o(a4) operator reproduce the

same action in the limit a → 0 (a is the lattice spacing). A natural choice for the problem

at hand is the Wilson action

S = β
∑

P

(

1 −
1

2N
tr(UP + U †

P )

)

, (3.2)

where β = 2N/g2 and UP is the parallel transport of links over the elementary plaquette

P of the lattice.

Without loss of generality, we can assume that R is an irreducible representation and

the loop is planar. For simplicity, we also assume that k ≤ N/2. In order to compute the

leading contribution to 〈WR〉 at strong coupling we neglect the constant term in the action

and perform an expansion of e(β/2N)(UP +U†
P

) in powers of β/2N . This allows us to rewrite

the expression for the vev of the Wilson loop as

〈WR〉 =
1

Z

∫

(DUµ)WR

∏

P

∞
∑

n=0

(

β

2N

)n
(

n
∑

m=0

1

m!(n − m)!
tr Um

P tr U †n−m
P

)

. (3.3)

The terms that give a non-zero contributions in the expansion are those containing all links

in the boundary appearing in powers such that their resulting N -ality is opposite to the N -

ality of the Wilson loop. Thus, the minimal power of β that gives a non-zero contribution

in the sum over n in eq. (3.3) is n = k and the terms that contribute is
∏

P∈A tr U †k
P , where

A is the area of the minimal surface bounded by the Wilson loop. Hence, for the purpose of

computing the leading term in the strong coupling expansion, we can disregard the terms

in the action containing trUP .

3A good introduction to the lattice strong coupling formalism is given e.g. in [27].
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Following the traditional route of strong coupling computations, we perform a character

expansion of e(β/2N)tr U†
P

e(β/2N)tr U†
P = f + f

∑

r

crdrχ
?
r (UP ) , (3.4)

where χ?
r (UP ) is the character (i.e. the trace) of U †

P in the representation r, dr is the

dimension of that representation and the sum runs over all irreducible representations.

Using the orthogonality relation of the characters

∫

(DU)χ?
r(U)χr′(U) = δrr′ , (3.5)

we get

drcr =
1

f

∫

(DUµ) e(β/2N)tr U†
P χr (UP ) , (3.6)

with

f =

∫

(DUµ) e(β/2N)tr U†
P ' 1 (3.7)

at the lowest order in β. By using the character expansion eq. (3.4), it can be easily proved

that in the strong coupling limit

〈WR〉 = dim R e−σRA , σR = − log(cR) , (3.8)

with σR expressed in lattice units. This expression is similar to the AdS/CFT result

eq. (2.16). In particular, the factor in front of the exponential is the same, and is equal to

the dimension of the representation.

Let us now move on to the computation of cR. The power expansions of e(β/2N)tr U†
P

in terms of the trace of the plaquette in the fundamental representation χf (UP ) reads

e(β/2N)tr U†
P =

∞
∑

n=0

1

n!

(

β

2N

)n

χ?n
f (UP ) . (3.9)

The N -ality of χ?n
f (UP ) is N −n mod(N). At the lowest order in β only the terms with n ≤

N/2 will matter. Since χ?n
f (UP ) is the trace of an operator in a reducible representation, it

can be written as a weighted sum of traces of that operator in irreducible representations

of the same N -ality:

χ?n
f (UP ) =

∑

rn

mrn
χ?

rn
(UP ) , (3.10)

where mrn
counts how many times the irreducible representation rn of N -ality n enters

the decomposition of the reducible representation given by the tensor product of n (n ≤

N/2) fundamental representations. Inserting the previous equations back into (3.9) and

comparing the latter with (3.4), at the lowest order in β we get

crk
=

1

k!

(

β

2N

)k mrk

drk

. (3.11)

– 7 –
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Since in the large N limit ((k!)drk
)/mrk

= Nk [30], in this limit we get

cR =

(

β

2N2

)k

, (3.12)

which depends only on the N -ality of R. Hence

σR = σk = −k log

(

β

2N2

)

= kσ1 . (3.13)

The dependence of the string tension only on the N -ality of the representation is in complete

agreement with the AdS/CFT result. In the lattice strong coupling formalism, we also get

an expression for σk in terms of the (inverse) lattice ’t Hooft coupling β/(2N2). It is not

difficult to push forward the calculation and provide the first corrections to this expression

at finite N , which comes from the exact value of ((k!)dr,k)/mr,k. For instance, for the

irreducible representations of N -ality two the leading 1/N correction to the string tension

is 1/N for the symmetric and −1/N for the antisymmetric representation. As this example

shows, generally the leading correction will be in 1/N and not 1/N2, although exceptions

to this rule might arise, as it is the case for the mixed symmetry irreducible representation

with k = 3. This result, at finite N , is surprising and unexpected: we do not expect 1/N

corrections in pure SU(N) Yang-Mills theory, since the ’t Hooft genus expansion is in even

powers of 1/N [12, 13]. Moreover, we expect the same string tension for the symmetric

and the antisymmetric representation. We therefore interpret this as an artifact. In order

to check the issue of universality we will re-analyse some lattice data in the next section.

4. Representation independence of k-strings and the lattice

The independence of the string tension (or more in general of the string spectrum) from

the specific representation at given N -ality can be checked from first principles in SU(N)

Yang-Mills theory using lattice simulations. In lattice simulations, the most efficient way

to extract string tensions is to use correlation functions of (multiply) winding strings. The

correlators are expected to decay with the distance as the sum of exponentials:
〈

Φ†(0)Φ(t)
〉

=
∑

i

|ci|
2e−mix , (4.1)

where mi = σiL (L being the length of the loop and σi the tension associated to the stringy

state |i〉) and the coefficients ci =
〈

i|Φ†(0)|0
〉

, which give the overlap between Φ(0)|0〉 and

the eigenstate of the Hamiltonian |i〉, can be normalised in such a way that
∑

i |ci|
2 = 1.

Ideally a multiple exponential fit will provide information on the lowest-lying states of

the spectrum, the highest ones dying on distances that are much smaller than one lattice

spacing. It turns out however that this approach is inviable numerically. The most widely

used technique to extract σi is to build a set of Φα and to find the linear combinations that

make a given |ci|
2 of order 1. In practice, a recursive procedure is used: from the correlation

matrix Cαβ(x) =
〈

Φ†
α(0)Φβ(x)

〉

the linear combination of Φα which maximises the overlap

with the ground state is worked out, then a complement space to this vector is built with

– 8 –
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Figure 3: The masses of the lowest-lying states in the symmetric and antisymmetric representation

of SU(4) on a 323 lattice at β = 60.

the remaining trial operators and the procedure is repeated. This should allow to extract

the mass of the next excitations. However, since the number of trial operators reduces as

we go higher in the spectrum, the procedure becomes less and less efficient. Hence, while

the method is very effective at determining the energy of the groundstate (provided that

the trial operators have been judiciously chosen), it is less reliable in extracting the next

excitations. Moreover, the higher the energy of a state the quicker the corresponding signal

disappears as x increases. Since statistical errors in correlation functions do not depend

on x, this limits x to 3 or 4 in practical cases. Hence, with the technique commonly used,

typically one can confidently extract the energy of the first and second excited states,

provided that their energy is no more than about two in units of the lattice spacing. (More

details on the calculations of masses using correlation functions are provided e.g. in [8].)

With this in mind, we look at the excited spectrum at fixed representation in SU(4)

and SU(6) gauge theories in 2+1 and 3+1 dimensions. In the latter case, it has already

been noticed in [8] that states in representations other than the antisymmetric are all

degenerate with states in the spectrum of the antisymmetric representation. For k = 3

states in the symmetric spectrum are also degenerate with states in the mixed symmetry

representation. This seems to indicate that the states in a given representation are all

degenerate with states in all representations of lower symmetry.

The same pattern seems to emerge from the d=2+1 data. Using the Monte Carlo

data discussed in refs. [7, 31], we have analysed the spectrum in the k=2 symmetric and

antisymmetric channels for SU(4) and SU(6) and in the k=3 symmetric, mixed symmetry

and antisymmetric channels for SU(6) for the smallest lattice spacing simulated in both

cases. The masses of the lowest-lying states of the spectrum identified in the analysis

in each channel are plotted in figs. 3, 4 and 5 respectively. As in the d=3+1 case, the

– 9 –
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Figure 4: The masses of the lowest-lying states in the symmetric and antisymmetric representation

of SU(6) on a 243 lattice at β = 108.
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Figure 5: The masses of the lowest-lying states in the symmetric, mixed symmetry and antisym-

metric representation of SU(6) on a 243 lattice at β = 108.

lowest state in the k=2 symmetric channel is degenerate with the first excited state in the

k=2 antisymmetric channel for both SU(4) and SU(6) (as discussed in [8], by degeneracy

here we mean that the splitting between the so-called degenerate states is much smaller

than the typical splitting between states at fixed representation). In the k=3 sector we

see a degeneracy between the lowest state in the mixed symmetry channel and the first

excited state in the antisymmetric channel and the lowest state in the symmetric channel,

– 10 –
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the first excited state in the mixed symmetry channel and the second excited state in the

antisymmetric channel. Things become less clear when we look at higher excitations, but

this is to be expected, given that - as we have discussed before - the method for extracting

energies of excited states is typically reliable only for the first few excitations.

We interpret those observed features as a clear signature of the representation-indepen-

dence of the spectrum: states extracted from operators in different representations that are

degenerate in energy are in fact the same physical state, and not accidentally degenerate but

different states. In fact, if the spectrum depends only on the N -ality of the representation,

we would expect to extract the same states, no matter which representation at given N -

ality we are considering. Hence the lattice spectrum reflects the universality of the string

tension for representation with common N -ality, as discussed in the previous sections.

A less intuitive and more surprising result is the observation that the lowest (stable)

state in each representation does not appear on representations of higher symmetry. A

possible explanation [11] could be as follows: the variational basis used for the symmetric

representation has a small overlap with the true groundstate of the Hamiltonian and there-

fore correlation functions computed at large distance are needed in order to observe the

decay of the symmetric quasistable string into the antisymmetric stable string. Although

this seems unlikely at first, there are other examples in which a bad overlap hide a feature

that is known to be present, like in the case of the absence of a peak in the specific heat

for SU(2) gauge theory [29].

The apparent absence of the lowest-lying states in the spectrum of representations

with high symmetry can be explained with a simple model [13, 15]. Consider for instance

the correlation function of Polyakov loops in the symmetric two-index representation
〈

Φ† (0)Φ† (x)
〉

= C exp (−σA) + (1 − C) exp (−σ?A) . (4.2)

where A = L × x and L is the length of the loop. By definition σ? > σ, reflecting that

σ? refers to the tension of the excited string state. It is clear that after a long time

(Λ2
QCDA À 1) the first term in eq. (4.2) will dominate, namely the string will decay to its

ground state. However, the actual area required for the decay is

(σ? − σ)A À log
1 − C

C
. (4.3)

C can be measured in lattice simulations by looking at the overlap of the state with tension

σ? with Φ† |0〉. A safe upper bound is C ≈ 0.2. The two terms in eq. (4.2) have equal

size when (σ? − σ)A ≈ log 4 ' 1.4. In current lattice calculations this bound is never

reached. Among those accessible to us, the lattice calculations that uses the maximal area

to date is the SU(4) d=2+1 set discussed in this paper. For this calculation, the effective

string tension is most efficiently extracted by fitting correlators between 2 and 5 lattice

spacings, hence A = (32 × 3)a2 = 96a2. Since σ? − σ ' 0.01/a2, (σ? − σ)A ≈ 0.96

and the bound eq. (4.3) is not fulfilled, despite our conservative assumptions. In order

for the groundstate to be visible in this most favourable case fits to correlation functions

should span at least over five lattice spacings. Due to the statistical noise, this is currently

unfeasible with standard techniques.

– 11 –
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Our analysis can be easily extended to the more general case of arbitrary k and ar-

bitrary representation. Unless our string state is the antisymmetric, an unbearably long

simulation is needed to observe the groundstate.

5. Conclusions

In this paper we analysed the issue of representation independence of large Wilson loops.

By using holography and the lattice strong coupling expansion we found that

〈WR〉 = dimR exp (−σkA) . (5.1)

A similar result was already derived in 2d Yang-Mills theory: the factor dim R appears in

2d as well, but in 2d the string tension depends on the representation, since gluons are

non-dynamical in this model. Thus we can conclude that the factor dimR is universal and

conjecture that it is an exact result in theories with adjoint fields.

In order to check whether the string tension σk depends only on the N -ality we also

re-analysed some existing lattice data. Our analysis reasonably supports universality: rep-

resentations with common N -ality admit the same stringy spectrum. This conclusion is

based on the assumption that operators with a given symmetry have a bad overlap with

states with lower symmetry, so that in order to detect lowest-lying states using symmetric

operators large distances must be reached. This is not in contradiction with the observed

lattice spectrum. It would be interesting to repeat this analysis on the data used in

refs. [32, 33], which exploit a new technique that allows to study correlation functions at

larger distances.

Lattice simulations can also be used to check that the pre-exponent factor is indeed

dim R. Since the variational method used for extracting masses from correlation func-

tion is not designed for determining the prefactor, a dedicated calculation using different

techniques would be needed.
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